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Abstract
Theoretical studies of size dependent optical nonlinearities arising from
excitonic coherence are reviewed in this article. In particular, we concentrate
our attention on the phenomena in the size region beyond the long wavelength
approximation (LWA) regime,where the peculiar size-resonant behaviour of the
internal radiation field with nanoscale spatial structures causes anomalous size
dependence of the nonlinear response. On the basis of microscopic nonlocal
response theory, we demonstrate a size-resonant enhancement of the nonlinear
signal for several types of nonlinear process, where the interplay between
the spatial structures of the internal field and the wavefunction of confined
excitons plays an essential role. The predicted effects have been observed in
experiments, which shows that the mechanism of size dependence beyond the
LWA regime could be a new guiding principle for developing highly efficient
optical nonlinear materials and devices.
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1. Introduction

One of the attractive aspects of the optical properties of nanostructures is their remarkable
size dependence. Research in this area could provide a new degree of freedom for designing
highly functional photomaterials with modern nanofabrication technologies. Recent studies of
nanostructures have revealed a lot of peculiar optical effects not observed in bulk systems [1].
Many of them cannot be described with the conventional optical response theory based on
the macroscopic treatment of the matter system. For a proper description, a microscopic
treatment is essential: the quantum mechanical structures of the matter system must be
properly incorporated into the theory. Coherence of the matter system plays a particularly
important role in nanostructures because the electronic wavefunctions can be extended over
the whole volume of the sample. This causes size quantization, and hence the size dependence
of the discrete energy spectrum in dielectric functions, which makes the optical response of
nanostructures quite different from the bulk one. The change of the spatial structure of the
wavefunctions with the sample structure also introduces new elements in the optical response.
The oscillator strength, which is a standard measure of the radiation–matter coupling strength
in limited conditions, is generally determined through the spatial structures of the electronic
wavefunctions, and it shows explicit sample structure dependence in the nanoscale size regime.
One such effect, an enhancement of the oscillator strength in low dimensional systems, has
been well studied. For two-dimensional excitons, for example, it has been considered that
the excitonic binding energy becomes larger than the bulk one [2, 3], and so is the oscillator
strength due to the shrinkage of the electron–hole relative wavefunction. A similar effect has
been considered for quantum dots (zero-dimensional system), where the matrix element of the
transition dipole moment becomes larger and the oscillator strength increases with decrease
of the sample size [4, 5]. This size regime is called the strong confinement regime.

If the system size is much larger than the spatial extent of electron–hole relative
wavefunctions (excitonic Bohr radius), the picture of the confinement of the excitonic centre-
of-mass (c.m.) motion is appropriate for describing the optical processes [6]. This size regime
is called the weak confinement regime. Since it is possible for the coherent length of the
c.m. wavefunction to become very long, depending on the quality of the sample, peculiar
size effects appear over a wide range of size. In the late 1980s, arguments on the size-linear
enhancement of the third-order nonlinear susceptibility χ(3) and the radiative decay rate [9, 10]
attracted many researchers because they seem to be very favourable effects for developing
highly effective optical devices. These effects are not due to the shrinkage of the e–h relative
wavefunction, but due to the coherent extension of the c.m. wavefunction of excitons, whose
basis lies in an early paper discussing the giant oscillator strength effect [7, 8]. That is, the
oscillator strength is size-linearly enhanced as long as the c.m. wavefunction is coherent over
the whole volume of the sample, and the same behaviour is expected for χ(3) and the radiative
decay rate. Although this picture seemed to be clear in a limited size region, there were
ambiguous points such as how and at what size the enhancement is saturated, and how the
values of χ(3) and the radiative decay rate are connected to those of the macroscopic sample.

As mentioned above, the size dependences of the radiative decay rate and χ(3) are usually
discussed in terms of a common quantity, i.e., the oscillator strength. However, the saturation
of their size-linear enhancements is based on different physical mechanisms. In the calculation
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of χ(3) by means of the perturbation expansion of the density matrix, there arise two types
of term, i.e., the terms including only one-exciton states and those including two-exciton
states. If we note the contributions of only the former type of terms, they show size-linear
enhancement. When the size is so small that the level spacing between the quantized excitonic
states is wider than the peak width, this enhancement is substantial. However, this enhancement
should be saturated at a certain size. The saturation mechanism of this enhancement has been
elucidated by a theoretical demonstration with a particular excitonic model (non-interacting
Frenkel excitons on a one-dimensional chain with the size N) that enables us to derive an
analytical expression for χ(3) with a rigorous treatment [11, 13, 12, 14]. The calculated result
shows that the cancellation between the contributions of the one-exciton states and those of
the scattering two-exciton states begins to occur when the size becomes so large that the
level spacing is narrower than the peak width, which leads to saturation of the size-linear
enhancement. The maximum value of χ(3) and the size where the enhancement is saturated
(Ns) are determined by the inter-site transfer energy and the nonradiative damping constant.
We should remark that these demonstrations have been carried out under the long wavelength
approximation (LWA); that is, Ns is assumed to be much smaller than the scale of the spatial
variation of the radiation field. If Ns is larger than the wavelength of the resonant light, the
other mechanism should work to break the size-linear dependence before the enhancement is
saturated with the cancellation mechanism, which will be mentioned below.

The argument of the size-linear enhancement of the radiative decay rate based on the
same behaviour of the oscillator strength is also valid only in the LWA because the oscillator
strength is defined only under the LWA. If the wavefunction of the resonant state is localized
in a small volume where the spatial structure of the radiation field can be neglected, the LWA
is a good approximation. However, this condition is not always satisfied because the coherent
length of the c.m. wavefunction of excitons can be very long. As an effect of the spatial
variation of the radiation field, a saturation of the size-linear enhancement of the radiative width
has been theoretically demonstrated for one-dimensional chains consisting of two-level fine
particles [15] and atoms [16]. In these demonstrations, it has been shown that an enhancement
and its saturation of the higher excitonic levels follow the same behaviour as the lower level,
one after another, as size increases. The picture of the oscillator strength can no longer
be used to describe such behaviour of the higher excitonic levels because undoubtedly the
interplay between the spatial structure of the radiation field and that of the extended excitonic
wavefunctions plays an essential role. In such a case, the radiative width should be discussed
as a generalized measure of the radiation–matter coupling [15]. As explained later (with the
explicit expression for the interaction between induced polarizations, (8)), the light wavelength
normalized by the refractive index (from the nonresonant contribution) should be compared
with the excitonic coherent length for an examination of the validity of the LWA.

In the description of the linear and nonlinear polarizations, on the other hand, breakdown
of the LWA is induced by the spatial variation of the self-consistent Maxwell field in the
medium. In the first-principles treatment based on the quantum mechanical method, the
induced polarization at a position r in the linear response, for example, is written in a nonlocal
form, i.e.,

P (r) =
∫

χ(r, r′)E(r′) dr′, (1)

where χ is the linear susceptibility, E(r) is the electric field at position r. If the scale of the
spatial variation of E(r) is much longer than the coherent length of the resonance excited state,
the LWA can be introduced by taking E(r) outside the integral sign. However, the validity of
this condition is not self-evident because E(r) should be determined self-consistently with the
induced polarization. Actually, it has been clarified that the LWA fails in an unexpected small
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size region [17]. Induced polarizations generally have spatial structures similar to those of the
wavefunctions of the resonant states owing to the nonlocal response and, hence, the response
field also has nanoscale spatial structures reflecting those of the induced polarizations. In
nanostructures confining excitons, a particular spatial pattern can be dominant according to
the conditions of energy and size. In such a situation, the resonant behaviour of the internal
field strongly affects the size dependence of the nonlinear response. Although a particular
aspect of the resonant behaviour of the internal field has been studied as a problem of the
interference of the exciton–polaritons in a thin film, little attention has been paid to its influence
on the nonlinear response. Recently, we have theoretically proposed a new type of nonlinear
response where the peculiar spectral and spatial structure of the internal field brings about its
anomalous size dependence [17, 18], demonstrating nonlocal calculations for the pump–probe
spectroscopy and the degenerate four-wave mixing (DFWM). A particularly noteworthy effect
shown in these demonstrations is the size-resonant enhancement of nonlinear signals from
the non-dipole-type excitonic states. This effect is the first manifestation of the nonlocality
appearing in the nonlinear response. It is obvious that a picture based on a more general
quantity than the oscillator strength is absolutely necessary for describing this phenomenon.
As explained later, the components of the induced polarization associated with the respective
quantized excitons and the radiative corrections of these excitons are fundamental quantities
for understanding the nonlinear response beyond the LWA.

The above theoretical prediction has been examined in more recent experiments on DFWM
with very high quality GaAs heterostructures [19, 20]. Systematic measurements of the
thickness dependent DFWM signal have revealed a size-resonant enhancement of the DFWM
from a non-dipole-type excitonic state for a particular thickness region. One of the interesting
points of this nonlinear response is that the enhanced signal shows a very short radiative decay
time: a couple of picoseconds [21, 22]. This phenomenon is also directly related to the
breakdown of the LWA. In the LWA, the lowest excited state with the nodeless wavefunction
always has the largest oscillator strength, whereas the second confined exciton with one node
in its wavefunction exhibits the fastest radiative decay in the above experiment. The analysis
of the exciton–radiation coupled modes with consideration of the spatial structures of both the
radiation field and the excitonic c.m. wavefunction has clarified the peculiar size dependence
of the radiative width of confined excitons in the size region beyond the LWA, which is not
a size-linear dependence but size-resonant behaviour. In the case of GaAs thin layers, the
thickness where the radiative width of the second excitonic level takes its maximum value
is similar to the optimum thickness for the nonlinear response. This is very attractive from
the applications point of view because it would provide a solution as regards how to develop
efficient nonlinear devices combined with an ultrashort response time, going against the usual
understanding of the trade-off between nonlinearity and fast response.

The purpose of this article is to review the recent studies of an anomalous size dependence
of the nonlinear responses originating from long range excitonic coherence. In particular, we
focus on the effects where the interplay between the spatial structure of the radiation field and
that of the excitonic wavefunctions plays an essential role. Such a situation arises in the size
region beyond the LWA and its study has been insufficient so far because the conventional
optical response theory usually neglects the microscopic spatial structure of the radiation field.
In a series of studies, we have made full use of the microscopic and nonlocal response theory
to clarify the nonlinear processes peculiar to nanostructures.

This review is organized as follows. In section 2, the usual treatment of the LWA in
analyses of optical properties of nanostructures is reviewed and the size dependence under the
LWA is discussed. It is helpful for understanding what physics emerges from the generalized
treatment beyond the LWA if we see how the approximated expressions are derived from the
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general ones. The theoretical framework used to calculate the nonlinear response in a nonlocal
way is explained in section 3. In section 4, we give several theoretical results showing the
possibility of anomalous size dependence of the nonlinear response. Experimental results
corresponding to the theoretical proposals are presented in sections 5 and 6. A summary and
conclusion are given in section 7.

2. Size dependence of the optical response under the LWA

For a unified description of the optical response from the microscopic to the macroscopic
system, we should start from the nonlocal expression for the induced polarization. That is, the
resonant part of the linear polarization, for example, should be

P (r, ω) =
∫

dr′ χ(r, r′; ω)E(r′, ω) (2)

where

χ(r, r′; ω) =
∑

λ

χ̄
(1)
λ (ω)ρ0λ(r)ρλ0(r

′) (3)

and

χ̄
(1)
λ = 1/(Eλ − h̄ω − iγ ), (4)

ρλ0(r) = 〈λ|d̂(r)|0〉. (5)

In these expressions, χ(r, r′; ω) is the linear susceptibility, E(r, ω) is the electric field at point
r with the frequency ω, {Eλ} are the eigenenergies of the eigenstates {|λ〉} of the unperturbed
system. In (4), γ is a positive infinitesimal value representing the adiabatic switching of the
radiation–matter interaction. When we treat scattering mechanisms phenomenologically, γ

is taken to be a positive finite value. In (5), d̂(r) is the dipole density operator defined at
the microscopic position r. From the expressions (3)–(5), it is understood that if both the
positions r and r′ are within the coherent volume of a resonant state |λ〉, there arises a quantum
mechanical correlation between these positions. If this coherent length le is much shorter than
the light wavelength l, i.e., le � l, we can take E(r) outside the integral sign. That is, we can
rewrite equation (3), with some averaging process, as in the following form:

P (ω) = χ(ω)E(ω), (6)

where

χ(ω) =
∑

λ

C| ∫ dr ρ0λ(r)|2
Eλ − h̄ω − iγ

(7)

and C is a constant of proportionality. If the system size is macroscopic, P and E should
have macroscopic position dependence. In the case where the resonant states are the excitons
with the degree of freedom of the c.m. motion, ρ0λ(r) is proportional to the c.m. wavefunction
and the numerator of the rhs in equation (7) includes the well known form of the oscillator
strength of excitons [8]. In this case, C includes the effect of the relative wavefunction and an
electric dipole matrix element. For the sample size larger or smaller than the coherent length
of the excitons, the integral volume in the numerator of the rhs in (7) should be small so that
the internal field can be regarded as uniform to a good approximation. When the coherent
length of excitonic c.m. motion is limited by the sample size, it is obvious that the oscillator
strength appearing in (7) has size dependence. From the expression (7), it is understood that
the oscillator strength and the uncoupled excitonic levels in the denominator determine the size
dependent spectrum of the optical response. As for the third-order nonlinearity, the square of
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the oscillator strength appears in the numerator of the nonlinear susceptibility and, hence, the
susceptibility per volume shows explicit size dependence in the LWA, as shown later.

The oscillator strength also represents the radiative decay rate in the LWA. As we explain
in the next section, the generalized measure of the radiation–matter coupling strength is the
radiative width that is evaluated basically from the retarded interaction between the induced
polarizations expressed as

Aλλ′ ≡ −4πq2
∫ ∫

dr dr′ ρλ0(r) · Ḡ(T)(r, r′; ω) · ρ0λ′(r′), (8)

where Ḡ(T)(r, r′; ω) is the Green function that produces a transverse field. The explicit form
of Ḡ(T)(r, r′; ω) for free space is

Ḡ(T)(r, r′; ω) = Gq(r − r′)Ī +
1

q2n
[Gq(r − r′) − G0(r − r′)]∇′∇′, (9)

Gq(r) = eiq
√

n|r|

|r| , (10)

where Ī is the unit dyad, q = ω/c with c the light velocity, and n is the refractive index
from the nonresonant contribution. If n has position dependence, the additional terms arising
from the reflection at the boundaries between the regions with the different n values are added
depending on the geometry of the sample. In the limited case where the off-diagonal elements
of the retarded interaction can be neglected, the imaginary part of Aλλ corresponds to the
radiative width of the λ state. As we can see in (8), this quantity includes information on the
spatial structure of the electronic systems through ρλ0(r) and information on the radiation field
through Ḡ(T)(r, r′; ω). If we neglect the spatial variation in Ḡ(T), this quantity also becomes
proportional to C| ∫ dr ρλ(r)|2. In this way, the size dependences of the nonlinear response
and the radiative decay rate are both discussed in terms of the oscillator strength in the LWA.

To see the size effect of the oscillator strength, let us consider the Frenkel excitons as a
simple example of an excitonic model, whose eigenstate is

|K 〉 = 1√
N

∑
n

eiK nb†
n|0〉, (11)

for

K = 2n̄π/N (n̄ = 1, 2, . . . , N), (12)

where b†
n is the creation operator for the exciton at site n, and N is the number of sites. If we

take the dipole operator of the exciton as

d̂ =
∑

n

(Mbn + M∗b†
n), (13)

the transition dipole moment of the Frenkel exciton (11) in the LWA is

〈0|P̂ |K 〉 = √
N MδK 0, (14)

where M is the transition dipole moment of an atom (molecule). In this way, the dipole moment
shows a macroscopic enhancement by the factor

√
N . This point holds also for the Wannier

exciton, though there is a difference in the factor due to the additional freedom of internal
motion. Because of this property of the exciton, the oscillator strength for the lowest state
increases with the sample size as long as this state is coherent over the whole system. This
effect is called the giant oscillator strength effect, which is based on basically the same idea
as that for the bound excitons [7, 8]. According to this mechanism, it is possible to get a very
large oscillator strength by controlling the system so that the oscillator strength is concentrated
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in the lowest excitonic level. The size-linear enhancement of the radiative decay rate and the
third-order nonlinear susceptibility χ(3) were proposed by using this argument [9, 10]. As
for the latter case, a size-linear enhancement of χ(3) per unit volume was expected from the
fact that each term of χ(3) in the perturbation expansion is proportional to the square of the
oscillator strength in the LWA.

These theoretical proposals seem attractive and some experimental results have shown
a certain size enhancement of the nonlinear response [23, 24]. However, some ambiguous
points exist in these arguments. Although the above size-linear enhancement was attributed to
excitonic coherence, the size-linear factor appears also in a local two-level system in fact; that
is, if we calculate the contribution to χ(3) only from the one-atom excited states, it contains a
factor N [13]. Because of the local nature of the system, the factor N cannot be related to the
spatial extent of the excitonic wavefunctions. This difficulty can be eliminated by considering
the cancellation between the terms including the ground state as the intermediate state and
those including the two-exciton state. If double excitation at one site is allowed, all terms are
cancelled out, which agrees with the fact that a pure bosonic system does not have nonlinearity.
For the excitonic system, some degrees of freedom escape from the cancellation because of
the Pauli exclusion principle prohibiting double excitation at one site. The remaining terms
correspond to χ(3) which does not have unphysical size dependence. In relation to this problem,
Banyai et al [25] demonstrated the complete cancellation between the above two types of
term when excitons are treated as pure bosons without energy dispersion. They discussed
the size effect when the excitons deviate from the pure boson system, introducing biexciton
states. After this review appeared, demonstrations of the cancellation effect of the excitonic
system with energy dispersion were carried out by using a one-dimensional Frenkel excitonic
system [11, 13], and the mechanism of the size-linear enhancement of χ(3) and its saturation
have been clarified in the LWA [12, 14]. That is, the remaining terms after cancellation contain
the contributions of the one-exciton resonance and those of the two-exciton resonance, and
they show size-linear enhancement at the one-exciton resonance energy when the system size is
so small that each contribution is isolated energetically. However, as the size increases further,
this enhancement is saturated because of the cancellation of the two contributions. The size
region where χ(3) shows the enhancement is determined by the transfer energy and nonradiative
damping which are the elements related to the coherent nature of the excitons. Although this
argument is very clear, we should keep it in mind that it is limited to the size regime where
the LWA is valid. If the scale of the spatial variation of the internal field is smaller than Ns, a
nonlocal theory is necessary to properly describe the size dependence of the nonlinear response.

In parenthesis, it is remarked that the cancellation behaviour is much influenced by the
level scheme of the two-exciton states, and our recent studies have elucidated that the size
dependence of χ(3) at one-exciton resonance has a strong correlation with the exciton–exciton
interaction. For example, if biexciton states are formed and split off from the band of unbound
two-exciton states, the part escaping from the cancellation increases near the one-exciton
resonance energy. This effect is more important for higher dimensions because a larger
amount of escape from the cancellation occurs for higher dimensions. In order to avoid
divergence from our topic, we refer the reader to our previous publications [13, 14, 26, 27] for
detailed discussions of the size dependence of χ(3) in the LWA and the cancellation problem,
concentrating our attention on the size dependence beyond the LWA hereafter.

3. Nonlocal theory of nonlinear optical response

As we discussed in the previous section, in the conditions where the coherent length of excitons
is longer than the wavelength of the internal field, the argument of χ(3) alone is not sufficient to
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explain the size dependence of the nonlinear response because the internal field also shows size-
resonant behaviour. In such cases, nonlocal treatment of the optical response is indispensable.

In this section, the microscopic nonlocal response theory developed by Cho [28, 29] is
explained and, then, we describe how one can extend it to the nonlinear response.

3.1. Microscopic nonlocal theory for linear response

The main task in the nonlocal response theory is to solve the Maxwell equation including the
polarization expressed in the nonlocal form, namely

∇ × ∇ × E(r, ω) − q2ε(r)E(r, ω) = 4πq2P (r, ω), (15)

P (r, ω) =
∫

dr′ χ(r, r′; ω)E(r′, ω), (16)

where ε(r) is the background dielectric constant that generally depends on the position r. The
explicit form of χ(r, r′; ω) is given in equations (3)–(5). By using a dyadic Green function,
the solution of equation (15) can be written as

E(r, ω) = Eb(r, ω) + 4πq2
∫

dr′ Ḡ(r, r′, ω) · P (r′, ω), (17)

where Ḡ(r, r′, ω) satisfies

∇ × ∇ × Ḡ(r, r′, ω) − q2ε(r)Ḡ(r, r′, ω) = Īδ(r − r′), (18)

and Eb(r, ω) is the field determined by just the background dielectric constant. Substituting
equations (16) (and (3)) into (17), we obtain

E(r, ω) = Eb(r, ω) + 4πq2
∑

λ

∫ ∫
dr′ r′′Ḡ(r, r′; ω) · ρ0λ(r

′)ρλ0(r
′′)

Eλ − h̄ω − iγ
· E(r′′, ω). (19)

The key point of this theory is the separable form of the susceptibility with respect to the
coordinates as shown in (3). This nature makes it possible to rewrite the equation (15) as a linear
simultaneous equations system. That is, integrating both sides of equation (19) multiplied by
ρλ0(r), we obtain the linear equation for determining {Xλ0}:

(Eλ − h̄ω − iγ )Xλ0(ω) +
∑
λ′

Aλλ′(ω)Xλ′0(ω) = X (0)

λ0 (ω), (20)

where we define

Aλλ′(ω) ≡ −4πq2
∫ ∫

dr dr′ρλ0(r) · Ḡ(r, r′; ω) · ρ0λ′(r′), (21)

Xλ0(ω) ≡ Fλ0

Eλ − h̄ω − iγ
, (22)

X (0)
λ0 (ω) ≡

∫
dr ρλ0(r) · Eb(r, ω), (23)

and

Fλ0(ω) ≡
∫

dr ρλ0(r) · E(r, ω). (24)

In these definitions, Aλλ′ is the interaction between the induced polarizations associated with
the λ and λ′ states, X (0)

λ0 is the interaction between the incident field and induced polarization,
and X0λ is the amplitude of the λ component of the induced polarization. Fλ0 is the λ component
of the internal field when we expand it in the basis of the wavefunctions ρλ0(r). According
to the definition of Ḡ(r, r′; ω), Aλλ′ includes both the instantaneous Coulomb and retarded
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interactions. Substituting the solutions of equation (20) into (19), the response field at an
arbitrary place can be obtained. If we express equation (20) in a matrix form as

SX = X(0), (25)

the roots of det S = 0 provide the complex eigenenergies (	λ) of the radiation–matter
coupled system whose real parts {Re[	λ]} include the radiative shift and whose imaginary
parts {Im[	λ]} correspond to the radiative width. In the size region beyond the LWA, these
quantities play a key role rather than the oscillator strength.

3.2. Microscopic nonlocal theory for the third-order nonlinear response

As for the third-order nonlinear response, P(3) can be calculated by means of the usual
perturbation expansion of the density matrix [31], namely,

P (3)(r, t) = (−i)3
∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3 〈[[[d̂(r, t), H ′(t1)], H ′(t2)], H ′(t3)]〉, (26)

where the angular brackets mean a statistical average, h̄ is taken to be unity, d̂(r, t) and H ′(t)
are the interaction representations of the dipole density operator and the electron–radiation
interaction, respectively:

d̂(r, t) = exp(iH0t)d̂(r) exp(−iH0t), (27)

H ′(t) = exp(iH0t)

{
−

∑
s

∫
dr d̂(r) · E(r, ωs) exp(−iωs t + γ t)

}
exp(−H0t), (28)

H0 being the unperturbed Hamiltonian, γ = 0+ the factor for adiabatic switching of the
electron–radiation interaction. Decomposing the threefold commutator and carrying out the
integration in (26), we get the expression

P (3)(r, t) =
∑

p

∑
q

∑
s

∫
dr1

∫
dr2

∫
dr3 exp[−i(ωp + ωq + ωs + 3iγ )t]

× E(r1, ωp)E(r2, ωq)E(r3, ωs)χ
(3)(r, r1, r2, r3; ωp, ωq , ωs), (29)

where

χ(3)(r, r1, r2, r3; ωp, ωq , ωs) =
∑

λ

∑
µ

∑
ν

( 〈0|d(r)|λ〉〈λ|d(r1)|µ〉〈µ|d(r2)|ν〉〈ν|d(r3)|0〉
(Eλ0 − 	′

3)(Eµ0 − 	′
2)(Eν0 − ω′

s)

+
〈0|d(r3)|λ〉〈λ|d(r1)|µ〉〈µ|d(r)|ν〉〈ν|d(r2)|0〉

(Eνµ − 	′
3)(Eνλ − 	′

2)(E0λ − ω′
s)

+
〈0|d(r3)|λ〉〈λ|d(r2)|µ〉〈µ|d(r)|ν〉〈ν|d(r1)|0〉

(Eνµ − 	′
3)(E0µ − 	′

2)(E0λ − ω′
s)

+
〈0|d(r2)|λ〉〈λ|d(r1)|µ〉〈µ|d(r)|ν〉〈ν|d(r3)|0〉

(Eνµ − 	′
3)(Eνλ − 	′

2)(Eν0 − ω′
s)

+
〈0|d(r3)|ν〉〈ν|d(r2)|µ〉〈µ|d(r1)|λ〉〈λ|d(r)|0〉

(Eλ0 + 	′
3)(Eµ0 + 	′

2)(Eν0 + ω′
s)

+
〈0|d(r2)|ν〉〈ν|d(r)|µ〉〈µ|d(r1)|λ〉〈λ|d(r3)|0〉

(Eνµ + 	′
3)(Eνλ + 	′

2)(E0λ + ω′
s)

+
〈0|d(r1)|ν〉〈ν|d(r)|µ〉〈µ|d(r2)|λ〉〈λ|d(r3)|0〉

(Eνµ + 	′
3)(E0µ + 	′

2)(E0λ + ω′
s)

+
〈0|d(r3)|ν〉〈ν|d(r)|µ〉〈µ|d(r1)|λ〉〈λ|d(r2)|0〉

(Eνµ + 	′
3)(Eνλ + 	′

2)(Eν0 + ω′
s)

)
. (30)
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In these expressions, we assume T = 0 K, and

H0|ξ〉 = Eξ |ξ〉 (ξ = 0, λ, µ, ν), (31)

Eξη = Eξ − Eη, (32)

	′
3 = ωp + ωq + ωs + 3iγ, (33)

	′
2 = ωq + ωs + 2iγ, (34)

ω′
s = ωs + iγ. (35)

Here, we use the notation A1, A2, . . . , B4 in the order of appearance in (30). Bi (i = 1, 2, 3, 4)
shows the reversed order of operators compared with Ai and they are multiplied by −1.

In equation (30), |µ〉 can be the ground state or doubly excited states. The former and latter
cases are denoted as Ai(0), Bi(0) and Ai (2), Bi(2), respectively. As argued in the previous
section, a cancellation between these two types of term occurs. Therefore no term should be
omitted without proper examination of its contribution.

As in the case of linear response, the separable form of each term with respect to the
coordinates is the key to solving the nonlinear Maxwell equation [30]. In χ(3), there appear
dipole density matrix elements of the form 〈σ |d̂(r)|τ 〉 where {|σ 〉, |τ 〉} is either a ground
state or singly or doubly excited states. The matrix element of d̂(r) connecting the one- and
two-exciton states can be written as

〈λ|d̂(r)|µ〉 = ρλµ(r). (36)

Using this expression for the matrix element together with ρ0λ(r) defined in (5), we can
write P(3) with the parameters {Fστ }. The solution of the Maxwell equation for a certain
frequency from a particular combination of (ωs, ωp, ωq) can be written as in (19) with the
Green function Ḡ(r, r′; ω). Substituting the above solution in the definition of Fστ , we can
derive a simultaneous cubic equations system to determine a set of {Fστ }.

In the nonlinear case, we have to consider a set of Maxwell equations for all the
relevant frequency components of the field, and these components are coupled through the
nonlinear terms. Let us suppose that there are altogether Nf frequency components of the
field (ω1, ω2, . . . , ωNf ). In the Maxwell equation for frequency ωnf , the expansion coefficients
{Fλ0(ωnf )} appear from the first-order polarization P(1)(r). The contribution from P(3)(r) in
the same equations contains the products of three expansion coefficients {Fστ }. For example,
the expression corresponding to A1(0) in P(3)(r) is

P (3)(r, t)|A1(0) = −
∑
p,q,s

exp[−i(ωp + ωq + ωs + 3iγ )t]

×
∑

λ

∑
ν

ρ0λ(r)Fλ0(ωp)F0ν(ωq)Fν0(ωs)

(Eλ0 − 	′
3)	

′
2(Eν0 − ω′

s)
, (37)

where
∑

p,q,s means the summation over all the combinations of (ωp, ωq , ωs ) which satisfy
the condition ωp + ωq + ωs = ωnf , with ωp, ωq , and ωs taken from the set (ω1, ω2, . . . , ωNf ).

The term corresponding to A1(2) is

P (3)(r, t)|A1(2) =
∑
p,q,s

exp[−i(ωp + ωq + ωs + 3iγ )t]

×
∑

λ

∑
µ

∑
ν

ρ0λ(r)Fλµ(ωp)Fµν(ωq)Fν0(ωs)

(Eλ0 − 	′
3)(Eµ0 − 	′

2)(Eν0 − ω′
s)

, (38)

where

Fλµ(ωp) =
∫

dr ρλµ(r)E(r, ωp). (39)
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The term corresponding to B2(2) is

P (3)(r, t)|B2(2) =
∑
p,q,s

exp[−i(ωp + ωq + ωs + 3iγ )t]

×
∑

λ

∑
µ

∑
ν

ρνµ(r)F0ν(ωq)Fµλ(ωp)Fλ0(ωs)

(Eνµ + 	′
3)(Eνλ + 	′

2)(E0λ + ω′
s)

. (40)

Writing the remaining 13 terms in a similar way, we see that P (3)(r) is written as a linear
combination of the functions {ρ0λ(r)} ({ρλ0(r)}) and {ρλµ(r)} ({ρµλ(r)}).

In the coefficients of these functions, there appear products of three Fστ s. If we regard
{F0λ(ωnf )} ({Fλ0(ωnf )}) and {Fλµ(ωnf )} ({Fµλ(ωnf )}) as given constants, we can write the
formal solutions of the Maxwell equation as in equation (19) with the Green function
appropriate for the geometry considered. Substituting these solutions {E(r, ωnf )} in the
definitions of the expansion coefficients (24), (39), we obtain the simultaneous cubic equations
for (Nλ + Nλ Nµ)Nf variables {Fστ }, where Nλ and Nµ are the numbers of one- and two-exciton
states. Since there are (Nλ + Nλ Nµ)Nf equations, we can obtain unique solutions.

Though it may be difficult to solve these equations analytically, it is possible to solve them
numerically in the case where not too large a number of states are required as the basis set.
For the large system size, there are the cases where we omit the terms containing the higher
levels that do not contribute in the relevant resonant energy region. As for the summation of
the frequency, it can be restricted to the combinations which satisfy the resonant conditions
and, actually, the calculations have been performed for particular cases of combinations of
frequencies, and models of electronic systems. This method has been used for the analysis of
pump–probe measurements [30, 17], four-wave mixing [32, 20], the input intensity dependence
of a single incident beam [33],and so on. For the pump–probe measurements and the four-wave
mixing, the Maxwell equations can be reduced to linear equations if the probe beam is assumed
to be much weaker than the pump or control beam, which makes the problem very easy. On the
other hand, for the analysis of the input intensity dependence for the case of a single incident
beam, we have to solve the simultaneous cubic equations for unknown parameters {Fστ }. The
iterative method is useful for solving such cubic equations. In sweeping the input intensity, we
start from an intensity near the linear response region, employing the solutions of {Fστ } for the
linear response as the zeroth-order solutions, because the deviation of the convergent solutions
from the linear one is not very large. After the convergent solutions are obtained, we move to
a higher input intensity and perform the iterative calculation employing the previous solutions
as zeroth-order solutions. Repeating such steps, we sweep in the input intensity domain.
Interestingly, we can find another set of solutions by sweeping from the higher intensity to
the lower, if bistable solutions are possible. It is difficult to obtain such solutions in a general
way, because the simultaneous equations have many dimensions, and mathematically a large
number of solutions exist. While detailed results of such calculations are not described in this
review, the peculiar input–output characteristics due to nonlocality are presented in [33].

In the rest of this review, several examples of calculation for pump–probe measurements
and degenerate four-wave mixing (DFWM) near excitonic resonance are shown, where the
anomalous size dependence due to the excitonic coherence typically appears.

4. Anomalous size dependence of the nonlinear response beyond the LWA

In the size regime beyond the LWA, a remarkable spectral and spatial structure of the internal
field strongly affects the size dependence of the nonlinear response and, thus, size-resonant
behaviour appears in various types of nonlinear process,which is in contrast with the size-linear
behaviour of the nonlinear susceptibility discussed in the LWA.
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In the macroscopic theory of the optical response of solids, a microscopic spatial structure
of the internal field is neglected, and hence it is considered that a dipole-type transition
always provides the largest contribution in the elementary optical process. This, however, has
been revealed to be untrue by analyses based on the microscopic response theory, especially
for nanostructures [30, 32]. In the weak confinement regime, the spatial structure of the
resonantly induced polarizations generally has similar patterns to those of the excitonic
c.m. wavefunctions. On the other hand, the internal field is determined as a superposition
of the incident light and radiated field by the induced polarizations. With such a self-
consistent relationship, the spatial structure of the internal field strongly reflects those of
the induced polarizations. As a result, a peculiar size dependence of optical responses is
expected over a wide range of size regions. Although particular aspects of this effect have
been studied as a problem of polariton interference in ultrathin films experimentally [34–36]
and theoretically [37, 38, 6, 39], there has been no discussion on how this effect influences the
nonlinear response. In this section, we demonstrate nonlocal calculations of the internal field
within the linear response regime considering a specific model system and, then, a peculiar size
dependence of the nonlinear response is discussed, especially for non-dipole-type excitonic
states.

4.1. Resonant behaviour of the internal field with a nanoscale spatial structure

In order to make a smooth continuation to the model used in the nonlinear calculation, we handle
the problem with a discrete lattice model, namely, a thin film consisting of N discrete layers
where the c.m. motion is confined to along the surface normal direction and the relative motion
is fixed. (The relative motion of excitons is reflected in the parameter of the exciton–radiation
coupling per unit cell (e.g. LT splitting).) The excitation on each layer is specified by the
layer number j and the 2D vector k in the lateral direction. The possible distortion of exciton
wavefunctions near the film surfaces is neglected for simplicity (though more sophisticated
treatment is possible, by considering the evanescent components of the wavefunction near the
surfaces [40, 41]). Within the linear response, this model gives essentially the same result as
the continuum model based on Wannier excitons with properly chosen parameter values for
the transfer energy and the transition dipole moment per unit cell [42].

The unperturbed Hamiltonian of this model is

H0 =
N+1∑
j=0

ε0a†
j a j − b

N+1∑
j=1

(a†
j−1a j + a†

j a j−1), (41)

where a†
j and a j are the creation and annihilation operators of an exciton on the j th site, ε0 is

the excitation energy of each site, b is the transfer energy, and we introduce the virtual sites
j = 0 and N + 1 on which the amplitude of the exciton is supposed to be zero. The lattice
constant of the chain is taken to be the unit of length. The eigenvalues and eigenfunctions of
one-exciton states are

E1(n) = ε0 − 2b cos(Kn) (42)

and

|Kn〉 =
√

2

N + 1

∑
j

sin(Kn j)a†
j |0〉, (43)

respectively. The allowed values of Kn are

Kn = nπ

N + 1
(n = 1, 2, . . . , N). (44)
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Figure 1. The intensity of the internal field I j as a function of the discrete site j and the photon
energy. (a) N = 10, (b) N = 52, (c) N = 91, (d) N = 401. � = 0.06 meV for every N . Contour
lines of I j and vertical lines indicating one-excitonic levels are shown at the top of each figure.

We apply this model to the calculation of the linear response by means of the microscopic
nonlocal response theory explained in section 3.

As for an example of a single-component exciton with a small Bohr radius, we choose the
material parameters of the Z3 exciton of CuCl:

h̄ωT = 3202.2 meV, b = 57.0 meV,

4π |M|2
v0

(≡�LT) = 5.7 meV, εb = 5.6, a0 = 5.4 Å,
(45)

where h̄ωT is the transverse exciton energy, namely the energy of the bottom of the exciton
band for N → ∞, i.e., h̄ωT = ε0 − 2b, v0 is the unit cell volume, M is the transition dipole
moment per cell, �LT is the LT splitting energy, i.e., the separation between h̄ωT and the
longitudinal exciton energy, a0 is the lattice constant.

The spatial distribution of the field intensity I j (=|E j |2) in the film is shown in figure 1 for
several values of the thickness, where E j is the electric field at site j . We assume high quality
of the film with the small nonradiative damping (�) of 0.06 meV [36, 38]. This choice means
that we assume very high excitonic coherence in the sample.

In contrast with the case of N = 10, the spatial variation for N = 52 (91) near the lowest
excitonic level is remarkable, reflecting the spatial pattern of induced polarization associated
with the n = 2 (n = 3) excitonic state. An enhancement of the internal field at a particular size
(a particular energy) can be regarded as an effect due to a nanoscale Fabry–Perot interference.
For the thicker case (N = 401), the damping effect becomes dominant and the effect of
interference between the transverse and longitudinal excitonic energies is not conspicuous.
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In the case where the nonlocal effect is important, it is useful to express the nonlinear
polarization using the quantities Fστ as in (37)–(40) and to observe the size-resonant behaviours
of F0n (or X0n) rather than E j itself. Note that F0n means the amplitude of the component related
to the nth quantized exciton when we expand E j , for 1 � j � N , in terms of eigenfunctions
of c.m. motion of excitons in the film, namely, as

E j =
N∑

n=1

√
2

N + 1
sin

(
nπ

N + 1
j

)
F0n, (46)

which can be understood from equation (24). In the present model, an explicit expression for
X0n is

X0n =
∑

j

√
2

N + 1
sin

(
nπ

N + 1
j

)
E j (E1(n) − h̄ω − i�)−1. (47)

In figure 2, we show the energy dependence of |F0n|2 (n = 1, 2, and 3) and |X0n|2 (n = 1,
2, and 3). We see, for each n, that X and F are resonantly enhanced at particular energy
positions. The extents of the enhancement are different for different thicknesses of the film.
As we can understand from the fact that det S in equation (25) becomes zero at {Re[	n]},
X0n is resonantly enhanced at {Re[	n]}. It should be recalled that {Re[	n]} are eigenenergies
of the radiation–exciton coupled system including the radiative shift. On the other hand, the
energy positions where the {F} are enhanced are not just at {Re[	n]} though they are very near
{Re[	n]}. The extent of the enhancement of X is determined through the competition between
the enhancement of F and the off-resonance due to the radiative shift, i.e., En(1) − Re[	n],
appearing in the energy denominator of X . They both increase with increase of the film
thickness in the initial stage. As we see in figure 2, X02 shows a sharp enhancement. However,
no prominent enhancement of X01 is seen. This is because |E1(1) − Re[	1]| is much larger
than |E2(1) − Re[	2]| in the size region considered for the present model. (This situation
depends greatly on the geometry of the sample.) It should be remarked that the above situation
leads to a trade-off relationship between the magnitude of the nonlinearity and that of the
radiation–matter coupling through the same relationship as between the radiative shift and the
enhancement of X .

4.2. Pump–probe measurements

In this section, we consider the situation where the system is pumped at the frequency ω2 and
probed at the frequency ω1; that is, we require ω1 = ωp + ωq + ωs and pick up the contribution
of the most (triply) resonant terms. If the probe beam is much weaker than the pump beam,
we can make the following approximation: in Maxwell’s equation for the frequency ω2, there
exist terms proportional to the cube of F(ω2) and ones proportional to [F(ω1)]2 F(ω2), and
the latter are negligible as compared with the former. Therefore, the F(ω2)s can be calculated
independently from F(ω1)s. On the other hand, in the equation for the frequency ω1, the
terms proportional to the cube of F(ω1) are negligible compared with the terms proportional
to [F(ω2)]2 F(ω1). Therefore, inserting the values of the F(ω2)s into Maxwell’s equation for
the frequency ω1, we obtain a linear equation for determining the F(ω1)s with a renormalized
linear susceptibility due to the pumping. This approximation is valid under the usual condition
of third-order pump–probe measurement, which enables us to make a remarkable saving in
computing time.

In the nonlinear calculation, we introduce the term

Hex−ex = −δ̄

N∑
j=0

a†
j a

†
j+1a j a j+1, (48)
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Figure 2. (a) Spectra of |F0n |2 (n = 1, 2, 3) for various thicknesses N . (b) Spectra of |X0n |2
(n = 1, 2, 3) for various thicknesses N .

i.e., the nearest neighbour exciton–exciton interaction, which allows bound two-exciton states
in addition to the Hamiltonian (41). We treat δ̄ as a free parameter to see the effects in
the presence of the biexciton resonance. If we restrict ourselves to normal incidence, the
contribution to the optical response arises only from the k = 0 one-exciton states and the
K = 0 two-exciton states consisting of +k and −k one-exciton states. In the following
treatment, we consider only the contribution from the k = 0 subspace as the two-exciton
states. This assumption corresponds to the neglect of the lateral interaction between two
excitons.

Since it is not easy to obtain two-exciton wavefunctions in the closed form for this model,
we prepare the two-exciton states by expanding them in the products of a complete set of
one-exciton wavefunctions. We take a set of {|m, n)} (={b†

mb†
n|0〉}) as a base, where the case

m = n is excluded. Using this base, we expand the two-exciton states as

|µ〉 =
∑
n<m

C (µ)
n,m|m, n). (49)

Inserting (41), (48), and (49) into the Schrödinger equation, we solve the eigenvalue problem,
and determine {C (µ)

n,m} and the eigenvalues of the two-exciton states {Ēµ } numerically. By
using these results together with the explicit forms of the one-exciton states, the dipole matrix
elements between the ground and the one-exciton states, and the one- and two-exciton states
can be calculated. In this stage, we introduce the phenomenological damping constant in the
usual way as in [31]—that is, the population decay constant γ , the phase decay constant �

for between the ground state and one-exciton states, and 2� for between the ground state
and two-exciton states. However, we do not include nonlinear damping effects such as the



R262 Topical Review

excitation induced dephasing [43] because they do not have a qualitatively essential role in our
mechanism considered for the weak excitation limit.

In the following numerical calculation, we consider the pump frequency to be near the
lowest excitonic level E1(1), and the probe frequency scans around the energy of transition
between the biexciton states and one-exciton states where the sample is transparent in the
absence of the pump beam, and we see a pump induced change in the transmittance of the
probe beam. Among the many terms in P(3), a few terms make the main contribution to the
nonlinear signal in the present conditions, and they are proportional to factors that can be
written as

(ω2 − i� − E1(n))|Xn(ω2)|2
(ω1 + i� − Ẽµn)(ω1 + ω2 + 2i� − Ēµ)

Fm(ω1) (50)

and

−2�

γ

|Xn(ω2)|2
(ω1 + i� − Ẽµn)

Fm(ω1), (51)

where

Ẽµn = Ēµ − E1(n). (52)

(We denote F0n and X0n simply as Fn and Xn hereafter.) The former is known as a term
contributing to the two-photon absorption where the sum frequency of two photons (ω1 and ω2

in the present case) becomes identical to the energy of transition between the ground state and
the two-exciton states. The latter represents the pump induced transition from the one-exciton
states |Kn〉 to the biexciton states |µ〉 caused by a probe beam. The forms of these expressions
indicate that the nonlinear signal should strongly reflect the behaviour of |Xn(ω2)|2.

The spectrum of the nonlinear signal is a function of the thickness N and the pump
frequency (ω2). First, we observe the pump frequency dependence by fixing the thickness.
The pump energy scans the region where |X2|2 and |X3|2 take peak values. In this calculation,
the same parameter values as in (45) are used. Besides those, we choose δ̄ = 195.0 meV for
the attractive energy of two excitons, 7.2 × 104 and 7.2 × 102 V m−1 for the amplitudes of the
incident pump and probe beams, and 0.02 meV for the longitudinal damping constant (γ ).

Figure 3 shows the change in the transmittance spectrum of the probe beam δT (ω1) when
N = 50. There appear three main structures near the constant values 3.1684 eV ([A1]),
3.1679 eV ([A2]), and 3.1672 eV ([A3]) of the probe energy. These probe energies correspond
to the E1(n) → Ēµ transition energies for µ = 1, 2, and 3, respectively. Since the peak
positions on the ω1-axis do not depend on ω2, we know that these signals mainly come from
the terms in (51). In addition, a small peak structure ([A0]) due to the two-photon absorption
satisfying ω1 + ω2 = Ē1 can be seen. This signal comes from the terms in (50). It should
be remarked that the spectral structure of Xn is strongly reflected in these nonlinear signals.
Especially for the peaks indicated by [A1]−[A3], the Xn spectra are directly reflected in the ω2

dependence of the nonlinear signal; that is, the remarkable enhancements of the peaks [A2] and
[A3] are caused by the enhancements of |X2|2 and |X3|2, respectively. As shown in figure 2,
|X2|2 and |X3|2 are greatly enhanced around this thickness, exceeding the magnitude of |X1|2.
It should also be noted that the energy positions of the pump beam where the [An] peak values
take their maxima are shifted from the uncoupled excitonic levels E1(n) due to their radiative
shifts. The reason that the enhanced |Xn|2 leads to an induced transition from E1(n) to Ēn ,
not to Ēm (m �= n), is that the probe beam energy ω1 is in the transparent region in the linear
response regime. This means dominance of the uniform component in its spatial variation.

The effect of the resonant enhancement of |Xn|2 also leads to anomalous size dependence
of δT (ω1). In figure 4, the N dependence of δT (ω1) is given, where we fix the pump energy
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Figure 3. The pump induced change in the transmittance (−δT ) as a function of ω1 and ω2.
N = 50, (�, γ ) = (0.06, 0.02) meV

at the lowest excitonic level for each thickness, i.e., ω2 = E1(1). Two distinct peak structures
and an additional small structure can be seen in figure 4(a). We denote them by [B0], [B1]
and [B2], as shown in the figure. Their peak positions in energy are ω1 = Ē2 − E1(1)

for [B0], ω1 = Ē1 − E1(1) for [B1], and ω1 = Ē2 − E1(2) for [B2]. The small signal
[B0] which is conspicuous around N = 50 is due to the two-photon absorption where the
total energy of the pump and the probe beam is identical to the eigenenergy of the second
biexciton level Ē2. The signal [B1], whose size dependence is moderate, is due to two kinds
of superimposed nonlinear process, namely pump induced absorption by biexcitons where the
transition between E1(1) and Ē1 occurs, and two-photon absorption where the total energy
of the pump and the probe beam is identical to Ē1. Thus, the signal [B1] contains the both
processes, terms (50) and (51), and both of them always go through a complete resonance with
respect to all three factors in the denominators. In contrast with these signals, the signal [B2]
shows a remarkable size dependence, and the maximum of the peak very much exceeds that
of signal [B1] around size N = 52, though the energy denominator of this process (51) does
not show complete resonance. The enhancement of this nonlinear signal [B2] is due to the
size-resonant enhancement of |X2|2, and the size dependence of [B2] clearly reflects that of
|X2|2 in figure 2. At N = 52, 	2 becomes equal to E1(1) and |X2|2 is enhanced at this energy.
Since the pump beam is tuned to E1(1), an enhancement of the non-dipole-type spatial pattern
relating to |K2〉 in the induced polarization and internal field occurs.

The result for the larger damping constants, (γ, �) = (0.2, 0.6) meV, is shown in
figure 4(b). The distinction between [B1] and [B2] is not very clear in this case and the
size-resonant enhancement of [B2] cannot be seen. This means that coherence of the excitonic
wavefunction is essential for the emergence of size-resonant enhancement of the nonlinear
signal.

5. Observation of anomalous size dependence of the DFWM signal

A similar enhancement effect to that explained in the above section has been predicted also
for the DFWM [44, 32]. In the presence of the pump beam with the frequency and wavevector
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Figure 4. The pump induced change in the transmittance (−δT ) as a function of ω1 and thickness
N . ω2 = E1(1). (a) (�, γ ) = (0.06, 0.02) meV, (b) (�, γ ) = (0.6, 0.2) meV.

(ω2, k2) and the test beam with (ω1, k1), there arises a signal with (ωs = 2ω2 − ω1, ks =
2k2 − k1). This process is called four-wave mixing (FWM). In the degenerate case, that is
ω2 = ω1, the signal appears as a phase conjugate of the test beam. This nonlinear signal is
observed in the direction where no signal exists within the linear response; hence it is easier
to observe the signal as compared with the pump induced change of the transmittance. One
more attractive point as regards studying this nonlinear process is that an enhancement of the
internal field is expected to occur not only for the incident (pump and test) beams but also
for the signal beam itself. Therefore, we can expect much larger size enhancement of the
nonlinear signal than that of the pump–probe process. This effect has a good analogy with the
mechanism of surface enhanced Raman scattering where the double enhancements of both the
incident and scattered lights play an important role in enhancing the signal intensity [45]. A
size-resonant enhancement of the nonlinear response has been actually observed for the GaAs
double-heterostructure layers [19]. Also, systematic measurements of the thickness dependent
nonlinear signal and the theoretical analysis with an appropriate model of this material system
have confirmed the predictions of nonlocality induced size-resonant enhancement of the
nonlinear response [20]. In this section, we present the experimental results for high quality
of the GaAs double-heterostructure layers and their analysis.

5.1. The DFWM signal in the experiments

As we saw in the previous section, sample quality is essential for the emergence of a strong
size-resonant enhancement of the nonlinear response. GaAs is a promising material from
this point of view because of the technique for its growth being most advanced. The sample
preparation has been carried out with special attention paid to realizing ultrahigh quality so that
the coherence of the excitonic c.m. motion is well maintained over a whole sample. The layers
are grown on a GaAs(100) substrate by molecular beam epitaxy making double heterostructures
consisting of three layers of GaAs with equal thickness L. 5 nm thick Al0.3Ga0.7As layers
divide GaAs layers. The sample structure is shown in figure 5(a).

The reflectance spectrum near the Brewster angle for each sample is taken for sample
characterization. Figure 5(b) shows the spectrum for L = 110 nm in the vicinity of the 1s
exciton resonance. We can see very sharp peaks attributed to the quantized c.m. levels of
excitons. The linear response has been calculated with the nonlocal theory (figure 6(c)) by
using the model of confined excitons explained in the next subsection. Through the fitting of
the spectral shape, it has been clarified that the quality of the top layer is much better than those
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Figure 5. (a) The sample structure. (b) The observed reflectance spectrum for L = 110 nm.
(c) The calculated reflectance spectrum for L = 110 nm. The vertical dotted lines indicate the
quantized excitonic levels determined in the theory.

of the other layers, and the spectral shape is almost completely determined by the contribution
of the top layer. The best fit is obtained with � = 0.03 meV for the top layer, which means
very high quality of this layer.

With several samples prepared with different values of L and with almost the same damping
constant �, the thickness dependence of the nonlinear signal has been examined. The two-
pulse self-diffraction configuration has been used to measure the DFWM signal, where the
pulse width is 2 ps and its peak excitation intensity is set below 5 kW cm−2 where the detected
DFWM signal intensity shows a cubic dependence on the excitation intensity. The sample was
kept at 5 K during measurements. Figure 6(a) shows the energy dependence of the DFWM
signal intensity for several values of L. It should be noted that the signal is enhanced at
L = 110 nm. This enhanced value is 25 times larger than that of the bulk (1 µm thick)
sample [19]. Figure 6(b) shows the comparison between the signal intensities obtained by
a collinear measurement and a cross-linear one. The contributions from the one-exciton
resonance and the biexciton resonance are both contained in the former, whereas only the
biexciton resonance contributes in the latter. This result indicates a small contribution from
the biexciton resonance in the present nonlinear process.

5.2. Model of calculation

In the analysis of the above experiment, we have treated the contributions from two-exciton
states in a simple way because they are not essential in the size dependence of DFWM near
one-exciton resonance. As for biexcitons, we consider their c.m. motion similarly to that
of single excitons. The magnitude of the matrix element arising from the relative motion is
determined by comparing the signal intensity of the collinear measurement with that of the
cross-linear measurement [20]. We do not treat the scattering two-exciton states in an explicit



R266 Topical Review

(a) (b)

Figure 6. (a) The energy dependence of the DFWM intensity for several values of L . The peak
excitation intensity is set below 5 kW cm−2. (b) The energy dependence of the DFWM intensity
obtained by cross-linear and collinear measurements for L = 110 nm. The inset indicates their
ratio. The peak excitation intensity is set at 5 kW cm−2.

way because the cancellation between the contributions from (ground state–one-exciton state)
transitions and that from (one-exciton–two-exciton state) transitions does not strongly affect
the thickness dependence of the nonlinear signal in the thickness region considered [13, 14].
If the absolute signal intensity needs to be discussed, this effect should be treated seriously.

As a model of confined excitons in excitonic active layers of GaAs, we consider the
contributions from the heavy hole excitons alone because the experimental result for the linear
response shows little contribution of the light hole excitons to the main peak structures near the
lowest exciton level. Limiting ourselves to normal incidence, we deal only with the freedom
of Z components of the excitonic c.m. motion, where Z is the coordinate of the surface normal
direction. The eigenenergies and eigenfunctions of excitons in a film for K‖ = 0 can be written
as

En = h̄ωT + h̄2k2
n/2Mex (53)

and

φn(Z) =
√

2/(L̄) sin(kn Z), (54)

respectively, where h̄ωT is the transverse exciton energy in the bulk, Mex is the excitonic
total mass, L̄ is the thickness of the excitonic active region, and the allowed values of kn are
nπ/L̄ (n = 1, 2, . . .). For this model, the explicit form of the numerator of the quantity Xn

defined in equation (22) is
√

1/L̄
∫

dZ sin(kn Z)E(Z). For each GaAs layer, we consider the
homogeneous dead layers (HDL) [46] near the interfaces where the excitons are not active
because of the image force.

Since the contribution from the biexciton resonance is small in the present case, the terms
giving the main contributions to the nonlinear signal among those in equation (30) are the ones
relating only to one-exciton states. Those terms are proportional to factors that can be written
in the following form when ω2 = ω1:

−4�

γ
Xn(ω2)Xn(ω2)Xn(ω1)

∗. (55)
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Figure 7. The thickness dependence of the peak value of the DFWM intensity. Closed circles
are measured values in arbitrary units. The solid curve shows calculated values normalized by the
incident probe intensity. The extent of the enhancement is affected by the nonradiative damping
constant.

(In the actual calculation, we consider all kinds of terms including those relating to biexciton
states.) Also for DFWM, {Xn} is a fundamental quantity for understanding the size and
frequency dependence of the nonlinear response. Since Xn is resonantly enhanced at Re[	n]
depending on the size, {	n} and {Xn} should be examined in order to understand the nonlinear
response beyond the LWA, which is in contrast with the oscillator strength and the uncoupled
excitonic levels being the essential quantities for knowing the magnitude and the spectral
structure of the nonlinear response in the LWA.

5.3. Analysis of the DFWM signal

Here, we discuss the observed size dependence of the DFWM signal showing the calculated
result and examining {Xn} for the present model of GaAs layers. In figure 7, we show the
calculated result together with the observed data. The thickness dependence with a size-
resonant enhancement is very well reproduced by the theory. This size dependence can be
understood from the dependence of Xn on the frequency and thickness.

As explained in the previous section, Xn is enhanced at Re[	n]. Therefore, the condition
of size and frequency where the nonlinear signal is enhanced for each excitonic level can be
seen by calculating Re[	n] as a function of thickness. On the other hand, to consider how
greatly they are enhanced, we need to see the radiative shift, namely Re[	n] − E1(n), which
shows the extent of the off-resonance at the energy position where Xn takes a maximum value.
Figure 8(a) shows the thickness dependence of Re[	n] where we assume that only the top
layer is excitonic active. Because of the relatively large coupling between the radiation and
the lowest excitonic level, the (positive) shift of this level is large as compared with that of the
second (n = 2) level. The {Xn} are resonantly enhanced and take maximum values at Re[	n].
Similarly the {Fn}, which are in the numerator in {Xn}, are also enhanced near Re[	n]. As the
thickness increases, the {Fn} and the radiative shift increase, and as a result of the competition
between the increase of {Fn} and the off-resonance, the {Xn} take a maximum value at a certain
thickness. The maximum values of |Xn|2 (n = 1, 2) in the spectrum are plotted as functions
of thickness in figure 8(b). As we can see in figure 8(a), Re[	2] is nearer the uncoupled
excitonic state as compared with the case of Re[	1]. Because of this, the maximum value
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Figure 8. (a) The thickness dependence of Re[	n] (black curves) and the uncoupled excitonic
levels (grey curves). The vertical line shows the thickness where the DFWM signal takes a
maximum value. (b) The thickness dependence of the maximum values of |Xn |2 (n = 1, 2) in
units of a0|E0|2/�2, where a0 is the lattice constant. The black solid curve is the same as that for
� = 0.03 meV in figure 7 but normalized by |E0|2 × 10−5.

of |X2|2 is enhanced by thickness, while the enhancement of |X1|2 is not remarkable. This
leads to the situation being quite different from that in the LWA; that is, the n = 2 exciton,
whose wavefunction has a non-dipole-type spatial structure with one node in the surface normal
direction, provides a much larger nonlinear signal than the lowest excitonic state.

We can say that this effect is a result of a double resonance, i.e., the resonance in the internal
field due to the nanoscale Fabry–Pérot interference of exciton–polaritons and that with poles
in the energy denominator. Furthermore, it should be remarked that the internal field of the
signal itself is also enhanced due to the Fabry–Pérot interference in the degenerate case, i.e.,
ω2 = ω1. This means that we observe the signal enhanced through the multiple resonance
affecting the internal field for both the incident and signal light beams in the medium. On the
other hand, the weight of the contribution from the lowest exciton becomes smaller because
the off-resonance effect appears as the third power in the energy denominator for DFWM.

6. Ultrafast radiative decay of non-dipole-type excitonic states

The enhancement of the nonlinear signal of n = 2 excitons provides the opportunity to observe
the radiative decay process of ‘non-dipole-type’ excitonic states. Actually, Akiyama et al [21]
has demonstrated the very fast optical switching, 1.5 ps, of n = 2 excitons confined in GaAs
layers, where the pump–probe method in a cross-Nicol configuration has been used. This
switching time is dominated by the radiative decay process, and is much shorter than the usual
recombination time for the bulk excitons. It is obvious that the analysis of the radiative lifetime
based on the oscillator strength cannot be applied to the present case where the LWA does not
hold. In this section, the radiative width of confined excitons in a thin layer is theoretically
discussed, revealing the peculiar thickness dependence of the radiative width in the thickness
regime beyond the LWA.
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Figure 9. The radiative width of the confined excitons as a function of the film thickness. In (b),
the terms arising from the multiple reflections in the Green function are omitted in the calculation.

In the present calculation of Im[	n], basically the same model as in the previous section
is used, but we assume a free standing film without HDL for simplicity. As for the Green
function, we use that for the film geometry [47] and assume K‖ = 0. For homogeneous space,
the Green function is proportional to the factor eiq|Z−Z ′ |. Since we treat a film geometry here,
we add the terms containing the different coordinate dependences expressed by e±iq(Z+Z ′−L)

and e±iq(Z−Z ′−d) that represent the effect of the reflection at both surfaces. Figure 8(a) shows
the thickness dependence of the radiative width (Im[	n]) for each excitonic state. When
the thickness L is very much less than the light wavelength 2π/q , the width of the lowest
(dipole-type) excitonic state increases linearly with L. This effect corresponds to the size-
linear enhancement of the oscillator strength in the LWA regime. However, in the present
case, it turns out to decrease with further increase of L. This means that the spatial structure of
the radiation is no longer negligible and the LWA breaks down. Then the width of the second
(non-dipole-type) state increases and greatly exceeds that of the lowest one, and it takes a
maximum value at a certain thickness. This is due to the spatial structure of the radiation
field. It should be noted that the thickness where Im[	2] takes a maximum value is much
less than 2π/q . This is due to a cavity-like effect caused by the large reflectivity at surfaces.
This effect can be understood if we consider Im[	n] calculated by considering the eiq|Z−Z ′ |
type of coordinate dependence alone in G(Z , Z ′) (see figure 8(b)). In this case, the thickness
where Im[	2] takes a maximum value almost coincides with the light wavelength 2π/q . This
result indicates that the dielectricity of the surrounding medium is also an essentially important
factor in determining the radiative coupling of confined excitons. Interestingly, for the present
material, this effect makes the optimum thickness for the radiative width of the |K2〉 state very
near the optimum thickness for the enhancement of the DFWM signal.

This peculiar thickness dependence of the radiative lifetime of n = 2 excitons has also
observed experimentally [48]. With a sample structure similar to those in the previous section,
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Figure 10. (a) The measured DFWM intensity as a function of the delay time τ23 at τ12 = 0.
(b) The calculated DFWM intensity as a function of the delay time τ23 at τ12 = 0. The centre
frequency is tuned to the peak position in the DFWM spectrum for each thickness. A stand-alone
film of GaAs is assumed. In both (a) and (b), the values indicated are the thickness and the decay
time.

we chose three different values of the thickness, namely L = 80, 110, 130 nm. Picosecond
pulses from a mode-locked Ti:sapphire laser with a linewidth of 0.7 meV were used as an
excitation source. The temperature of the sample was kept at 5 K during the measurement
and the signal is obtained in a weak excitation condition (2.5 kW cm−2). We prepare three
beams with the wavevectors k1, k2, and k3. The signal in the backward diffraction geometry
ks = k1 + k2 − k3 is detected. In figure 9(a), we show the measured temporal profiles of the
DFWM signals; that is, the signal intensities as a function of the delay time τ23 at τ12 = 0 are
plotted. The results clearly show the very fast decay of the |K2〉 state. The coherent decay
times for L = 80, 110, 130 nm are 8.2, 3.2, and 4.6 ps, respectively. It has been verified
that the radiative decay time for the last two samples is much shorter than that for the lowest
state. As a reference, we show in figure 9(b) the calculated results obtained by the nonlocal
theory for the transient pulse response [49, 50], where the same model for the calculation as in
figure 8, i.e., a stand-alone film of GaAs, is assumed. Although the result in figure 9(b) should
not be compared directly with the above experimental one because the sample structures for
the two cases are different, it should be remarked that the present experimental results indicate
the following important points:

(1) Beyond the LWA, it is possible that the non-dipole-type excitonic states show much faster
radiative decay than the lowest state.

(2) The thickness dependence of the radiative decay rate is not monotonic, but shows an
enhancement with size.

Also we can say that this experimental result, which is the first observation of anomalous size
dependence of the radiative lifetime beyond the LWA, strongly supports the above theoretically
explained mechanism.

The systematic study of the radiation–matter coupling beyond the LWA using more
realistic models is in progress in our group; the possibility of wide range control of the radiative
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lifetime and nonlinearity through manipulation of the interplay between the spatial structures
of the excitonic wavefunction and the radiation field is being revealed. We hope that this type
of study will lead to a new guiding principle for the development of highly efficient nonlinear
materials and devices free from the trade-off relationship between nonlinearity and response
speed.

7. Summary and conclusions

After a brief review of the conventional discussion of the size dependent nonlinear response
based on the LWA where the oscillator strength is a fundamental quantity for describing the
radiation–matter coupling strength, we explained (1) how the LWA breaks down with increase
of the size and (2) the microscopic nonlocal response theory that can describe the optical
response beyond the LWA. Then, we introduced the nonlocal theory for the nonlinear response
which is an extended version of that for the linear response.

For the unified description of the optical response from the microscale to the bulk system,
a nonlocal treatment is necessary in principle. For the size regime beyond the LWA, this
treatment is indispensable because the spatial structure of the internal field plays an essential
role. Such situations typically appear when the excitonic centre-of-mass (c.m.) motion is
coherently extended over the whole volume of the sample. Since the coherent length of the
c.m. motion can be very long, the peculiar size dependence of the optical response appears
over a wide range of size.

The calculations of the electromagnetic field in nanostructures have revealed the following
points: since the motion of the Maxwell field should be determined self-consistently with that
of the induced polarization, the nanoscale spatial structure is reflected in the response internal
field. Depending on the system size and frequency, a particular spatial pattern similar to that of
the resonance excitonic state is dominantly enhanced. Therefore, the LWA breaks down in an
unexpected small size region. The theoretical demonstration of the pump–probe measurement
has predicted this size-resonant enhancement of the internal field to lead to an anomalous size
dependence of the nonlinear signal. A particularly noteworthy point is an enhancement of
the signal from a non-dipole-type excitonic state, which is in striking contrast with optical
responses described in the LWA. The size and frequency dependence of the nonlinear response
can be explained on the basis of the behaviour of the component of the induced polarization
Xn relevant to each confined exciton that is resonantly enhanced at the eigenenergies including
the radiative shift. A similar effect has been predicted also for degenerate four-wave mixing
(DFWM), and an experiment using GaAs heterolayers has confirmed the theoretical prediction.
Interestingly, the size-resonantly enhanced nonlinear signal exhibits an ultrafast radiative decay
of a few picoseconds. The analysis of the radiative width has explained this short radiative
decay time of non-dipole-type excitonic states, and revealed the peculiar thickness dependence
of the radiative width beyond the LWA.

Owing to the recent development of nanofabrication technologies, a lot of novel
nanostructures with highly coherent electronic systems are appearing and, hence, study based
on the nonlocal framework will be much more important, and will lead to the finding of novel
optical effects. We believe that such study is also important for establishing a new guiding
principle for developing highly efficient optical materials and devices, where the nanoscale
spatial variation is a new degree of freedom in manipulating the radiation–matter interaction.
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